半壁书屋 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

虽说数学悖论大多是一些让人越想越糊涂的逻辑思维游戏,但也有不少悖论来自于实实在在的数学问题。在缺乏现代数学工具的年代,这些反直觉的结论和看似不可调和的矛盾让数学家们百思不得其解,那些最难解决的悖论甚至为数学新分支的开创带来了足够的动机。不太为人熟知的 cramer 悖论就是一个漂亮的例子。

在描述 cramer 悖论之前,让我们先来考虑一个简单的情况。

两条直线交于一点。

反过来,过一点可以做两条不同的直线。

事实上,过一点可以做无数条直线。

确定一条直线需要两个点才够。

一切都很正常。

现在,考虑平面上的两条三次曲线。

由于将两个二元三次方程联立求解,最多可以得到 9 组不同的解,因此两条三次曲线最多有 9 个交点。另外,三次曲线的一般形式为

x^3 + a·x^2·y + b·x·y^2 + c·y^3 + d·x^2 + e·x·y + f·y^2 + g·x + h·y + i = 0

这里面一共有 9 个未知系数。

代入曲线上的 9 组不同的(x, y),我们就能得出 9 个方程,解出这 9 个未知系数,恢复出这个三次曲线的原貌。

也就是说,平面上的 9 个点唯一地确定了一个三次曲线。

这次貌似就出问题了:“两条三次曲线交于 9 个点”和 “ 9 个点唯一地确定一条三次曲线”怎么可能同时成立呢?

既然这 9 个点是两条三次曲线所共有的,那它们究竟会“唯一地”确定出哪条曲线呢?

在没有线性代数的年代,这是一个令人匪夷所思的问题。

cramer 和 Euler 是同一时代的两位大数学家。

他们曾就代数曲线问题有过不少信件交流。

上面这个问题就是 1744 年 9 月 30 日 cramer 在给 Euler 的信中提出来的。

在信中, cramer 摆出了两个稍作思考便能看出显然成立的事实:一条三次曲线能用 9 个点唯一地确定下来,两条三次曲线可能产生出 9 个交点。

cramer 向 Euler 提出了自己的疑问:这两个结论怎么可能同时成立呢?

Euler 心中的疑问不比 cramer 的少。

接下来的几年里,他都在寻找这个矛盾产生的源头。

1748 年, Euler 发表了一篇题为 Sur une contradiction apparente dans la doctrine des lignes courbes (关于曲线规律中的一个明显的矛盾)的文章,尝试着解决这一难题。

正如大家所想,矛盾的源头就是, 9 个点不见得能唯一地确定出三次曲线的方程,因为不是每个点的位置都能给我们带来足够的信息。

Euler 试图向人们解释这样一件事情:曲线上的 9 个点虽然给出了 9 个不同的方程,但有时它们并不能唯一地解出那 9 个未知数,因为有些方程是废的。

在没有线性代数的年代,解释这件事情并不容易。

Euler 举了一个最简单的例子:方程组

3x ? 2y = 5

4y = 6x ? 10

表面上存在唯一解,但事实上两个方程的本质相同——第一个方程乘以 2 再移项后就直接变成第二个方程了。

换句话说,后一个方程并没有给我们带来新的信息,有它没它都一样。

当然,这只是一个最为简单的例子。

在当时,真正让人大开眼界的则是 Euler 文中给出的三元一次方程组:

2x ? 3y + 5z = 8

3x ? 5y + 7z = 9

x ? y + 3z = 7

这个方程组也没有唯一解,原因就很隐蔽了:后两个方程之和其实是第一个方程的两倍,换句话说第一个方程本来就能由另外两个方程推出来。

因此,整个方程组本质上只有两个不同的方程,它们不足以确定出三个未知数来。

Euler 还给出了一个四元一次方程组的例子,向人们展示了更加复杂的情况。

类似地, 9 个九元一次方程当然也会因为出现重复信息而不存在唯一解,不过具体情况几乎无法预料:很可能方程(1)就是方程(2)和方程(5)的差的多少多少倍,也有可能方程(7)和(9)的差恰是前三个方程的和。

究竟什么叫做一个方程“提供了新的信息”,用什么来衡量一个方程组里的信息量,怎样的方程组才会有唯一解?

Euler 承认,“要想给出一个一般情况下的公式是很困难的”。

此时大家或许能体会到, Euler 提出的这些遗留问题太具启发性了,当时的数学研究者们看到之后必然是浑身血液沸腾。

包括 cramer 在内的数学家们沿着 Euler 的思路继续想下去,一个强大的数学新工具——线性代数——逐渐开始成型。

没错,这个 cramer 正是后来提出线性代数一大基本定理—— cramer 法则——的那个人。

半壁书屋推荐阅读:上门女婿的咸鱼生活诡盗奇谈法力无边高大仙进球吧!教练我们滔搏有救啦!穿越进传奇,我的爆率百分之三百美女公寓英雄联盟之传奇归来我能看透卡牌的隐藏说明全能游戏设计师第二人格不对劲绝地求生之系统无敌禁区之狐胡莱网游之双星传说梦与录神梦说,我有主角之资王者的脚下潜伏深渊在竞技场毁天灭地绝对搞错了什么穿成侯门主母,我成了京圈白月光重生:杀穿末日游戏洪荒:抱错大腿怎么办?欢迎来到诡梦世界求生游戏:种田是需要耐心的NBA:五双神迹谛造者补天记惹他?他隐藏职业,一人屠一城!离婚后,霸总亲手撕了我的马甲我不想受伤,所以我想专注于防御联盟全能大玩家网游之轮回主宰禁区之狐胡莱免费全文阅读海洋求生:从建设海岛开始竹排求生:我家狗子运气超好三个缩小版大佬带百亿资产上门沈翩枝贺厉存四重分裂主角叫楚剑秋柳天瑶的小说卢米安莉雅小说全本免费阅读我能偷渡洪荒世界英伦足球:斯坦福桥的主宰者末世狩猎人网游:当一个血牛自带成长反伤热血传奇:我才是巅峰商如意宇文愆全文免费网游之最强传说全民转职,开局召唤半兽统领满级力量的我,平趟五大联赛网游之终极盾皇最强宠婚:老婆大人,求翻牌西游之从加入诸天聊天群开始又被电竞狙神带飞了
半壁书屋搜藏榜:网游:天赋太强,游戏开局就维护开局滋崩,我在派派疯狂猎杀!篮坛传奇富豪超能进化:我的兵种有点贵黑境时代西游之从加入诸天聊天群开始英雄联盟之传奇归来我真的不修仙从一级玩家,重新开始全境入侵又被电竞狙神带飞了末日降临之天赋异禀我在火影成立夸夸教玄门大佬混都市网游之我的世界什么叫开挂型射手啊我一个NPC能有什么坏心思穿越三代:开局我火你悔NBA:开局一张三分体验卡超级打工仔万物品鉴系统氪金十亿,游戏开始修为反馈!腹黑王爷又吃醋了我能看透卡牌的隐藏说明掌上娇娇小说全文免费阅读世子妃你又被挖墙脚了云婷君远幽盖世小村医足球生涯:从躺冠到成为传奇孤城重启全民游戏:我能召唤赤月恶魔从贞子开始制作怪谈游戏三无勇者搞事中我在异世无限氪金爽翻天!我靠美食成为全朝首富豪门婚色:总裁娇妻太迷人和平精英之逆风而起吐槽篮球仙帝的自我修养卓简傅衍夜你的情深我不配全文免费阅读大结局阮白慕少凌一胎双宝总裁大人夜夜欢免费阅读全文被龙之队开除,我成了禁区之王次元之王者降临变身萌主播:大神,站住!绝品保镖美总裁三国神话世界序列游戏,从抽取道具开始联盟:开局辅助水子哥魅魔君主网游:什么法师!你爹我是火箭军冒牌职业大神
半壁书屋最新小说:网游:敢惹他?内裤都给你偷没了召唤万界军团史上最贱NPC王者:这个选手,正得发邪游戏降临:从隐藏职业开始封神人在巴黎奥运,班主任催交作业B级天赋,一样可以登顶列车求生:无挂求生nba最强球星詹姆斯哈登夏日狂响曲开局零幸运值?别慌我有任意门校花别撩我,我只想打篮球!NBA:穿越神医变教练带飞姚明网游之独步逍遥让你当王者陪玩,竟把校花泡了?都重生了,还让我从头开始网游之剑界我只是个NPC啊!学生议事录成为领主后,觉醒了进化天赋玩三国志战略版,分币不充闺蜜坑我玩盾卫七零娇娇一撒娇,腹肌硬汉顶不住全英雄绝活,我上分如喝水全民转职:枪炮师弱?我有东风狙升级,升级,还是升级!网游:开局野人,我能无限进化玄幻网球:拒绝系统成为世界最强灵界游戏,当炮灰的我再次重生了NBA:老詹要和我抱团星环游戏人在斗破写日记,薰儿蚌埠住了!斗罗:穿越天斗三皇子,多子多福寻宝:从小镇探险家开始里斯本竞技出道,开启葡萄牙王朝挂机游戏通往异世界进入求生游戏后,变成欧皇了!【网游之永恒】开局召唤精灵公主迷雾世界:我觉醒山海经征服诸天诺克萨斯的荣光绿茵梦之少年热血网游:御剑神刀全民领主:我打小日子就能变强综漫:从尸魂界开始砍穿万界战争雷霆之从成为地狱猫车长开始穿越海岛求生,误惹红发疯批大佬全民网游:我开局五大职业斗罗:武魂千仞雪,震惊比比东暗黑小佣兵NBA最强主教打散N个三巨头