半壁书屋 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

1850年,英格兰国教会神父柯克曼在闲暇时间提出一个数学问题:“学校有15名女生,每天3人一组出去散步。要保证每周的7天内,任何两人都有一次同组的经历,但也只能有一次同组经历。请问如何办到?”,这就是柯克曼女生问题。

在现代数学家看来,这类问题最好的办法把他们看成超图——一堆三个节点或更多的节点组成的集合。15个女生就是节点,三人同组就看成这三个节点用三条线段(图论术语会说三条边)连接成的三角形。

柯克曼女生问题实际上就是问,有没有一种三角形的排列,把这些女生节点连接起来,并且,这些三角形还不能共边。共边意味着两个女生被同组安排了两次。题设要求的安排意味着女生们每周都能相聚一次,而每一天都是和新朋友一起散步。

柯克曼提出这个问题之后,近200年来,无数相关问题吸引和困扰着数学家。

1973年,传奇数学家埃尔德什提出了一个类似的问题。

他问能不能构造一个超图,这个超图拥有如下两个看似矛盾的性质。

性质一,任意两个节点都恰好被一个三角形包含,就和之前的女生一样。性质一要求了三角形要非常的密。

性质二要求三角形要以某种精确的方式铺得足够广(具体的说,就是任意拿出几个三角形,三角形占用的结点数要比三角形本身的数量至少多出三个)。

”这有点矛盾,这些物体的布局你既要求局部上稀疏,又要求整体上稠密。“加州理工学院的数学家康隆(david conlon)如是说道。

2022年 1 月,四位数学家通过一份长达 50 的论文,证明了只要节点足够多,总是可以构造这样的超图。伯明翰大学的数学家罗(Allan Lo)说:“为了得到这个结果,他们用的办法的技术性程度令人惊叹。”康隆也说:“这是一个非常优秀的成果。”

研究团队建立了一个满足埃尔德什苛刻要求的系统方法,该系统方法从一个随机选择的三角形的开始,极其小心地设计以后续过程以满足他们的要求。“证明里那些复杂困难的分支情况的数量是非常惊人的。”康隆说。

他们的证明策略是从一个三角形开始,细致的构造这个超图。举个例子,你可以试想一下我们提到的15个女生,然后两两相连做线段。

我们需要从这些线段上描出我们需要的、满足条件的一堆三角形:

第一,任意两个三角形不共边。(满足这样条件的系统叫做施泰纳三元系)

第二,让每个三角形的子集占用足够多的节点。

数学家们对此有个通俗的类比。

现在假设我们不是在描三角形,而是在用乐高积木建造房屋。

你建造的前几个房子非常宏伟、坚固和精致。

你建好这些后,就把它们放在旁边备用。数学家把它们称为”吸收器“。

现在,用剩下的乐高积木继续随意的建造房屋。

当剩下的乐高积木越来越少的时候,你会发现一些散落的积木,和一些搭建不完善的房屋。

这个时候,你可以从吸收器上抽出几个积木块,用在不完善的建筑上。

因为吸收器非常的坚固,抽出一些积木不会导致严重的后果。

施泰纳三元系中,你的构造的房屋就是吸收器。

吸收器在这里就是精心挑选的线段(边)。

如果发现无法把剩余的三元组搭建成满足条件的三角形时,可以使用吸收器中的线段进行调整。当你做完这些调整后,吸收器本身也融入到了各个三角形之中。

吸收器的办法有时会遇到阻碍。

但是数学家们修补了这个问题,他们找到了一种新办法绕过这些阻碍。

比如,有一种叫做迭代吸收器的,它将线段划分成嵌套集合序列,于是每个吸收器都是会为下一级迭代服务。

”十多年来,进步巨大,“康隆说。”这已经是某种艺术形式,如果看成艺术,他们展示了一个非常高级的艺术。“

即便有了迭代吸收器,埃尔德什问题也依旧很难。”这就是问题没有得到解决的原因“,论文其中一个作者索尼(mehtaab Sawhney)说。

比如,在迭代吸收的其他应用中,一旦你完成了一个集合的构建——无论是三角形、泰纳三元系,还是其他结构——你可以认为事情告一段落并扔在一边。然而,埃尔德什的条件要求让这四位数学家不能这样做。有问题的三角形很容易触及多个吸收器的节点。

“一个你在500 步前选择的三角形,你需要以某种方式记住,并知道如何处理它,”索尼说。

这四个人最终发现,如果他们选择的三角形足够精细,他们就可以绕过每一个小问题。“最好的办法是考虑每个由 100 个三角形组成的子集,并保证以正确的可能性挑选三角形,”索尼说。

论文的作者们乐观地认为,他们的这个方法可以推广到别的问题。他们已经将他们的方法应用于一个关于拉丁方的问题——一个简化版的数独问题。

除此之外,还有几个问题最终可能被吸收器方法解决。“组合学中,尤其是在组合设计论中,随机过程是一个非常强大的工具。”其中一个也是关于拉丁方的问题叫做Ryser-brualdi-Stein 猜想,自 1960 年代以来一直没有解决。

智利大学的数学建模中心的副主任斯坦恩(maya Stein)说,虽然吸收器方法可能需要进一步发展才能解决这个问题,但自 30 年前方法建立以来,它已经走过了漫长的道路。“看到这些方法是如何进步和丰富起来,真是人生一大幸事。”

半壁书屋推荐阅读:上门女婿的咸鱼生活诡盗奇谈法力无边高大仙进球吧!教练我们滔搏有救啦!穿越进传奇,我的爆率百分之三百美女公寓英雄联盟之传奇归来我能看透卡牌的隐藏说明全能游戏设计师第二人格不对劲绝地求生之系统无敌禁区之狐胡莱网游之双星传说梦与录神梦说,我有主角之资王者的脚下潜伏深渊在竞技场毁天灭地绝对搞错了什么穿成侯门主母,我成了京圈白月光重生:杀穿末日游戏洪荒:抱错大腿怎么办?欢迎来到诡梦世界求生游戏:种田是需要耐心的NBA:五双神迹谛造者补天记惹他?他隐藏职业,一人屠一城!离婚后,霸总亲手撕了我的马甲我不想受伤,所以我想专注于防御联盟全能大玩家网游之轮回主宰禁区之狐胡莱免费全文阅读海洋求生:从建设海岛开始竹排求生:我家狗子运气超好三个缩小版大佬带百亿资产上门沈翩枝贺厉存四重分裂主角叫楚剑秋柳天瑶的小说卢米安莉雅小说全本免费阅读我能偷渡洪荒世界英伦足球:斯坦福桥的主宰者末世狩猎人网游:当一个血牛自带成长反伤热血传奇:我才是巅峰商如意宇文愆全文免费网游之最强传说全民转职,开局召唤半兽统领满级力量的我,平趟五大联赛网游之终极盾皇最强宠婚:老婆大人,求翻牌西游之从加入诸天聊天群开始又被电竞狙神带飞了
半壁书屋搜藏榜:网游:天赋太强,游戏开局就维护开局滋崩,我在派派疯狂猎杀!篮坛传奇富豪超能进化:我的兵种有点贵黑境时代西游之从加入诸天聊天群开始英雄联盟之传奇归来我真的不修仙从一级玩家,重新开始全境入侵又被电竞狙神带飞了末日降临之天赋异禀我在火影成立夸夸教玄门大佬混都市网游之我的世界什么叫开挂型射手啊我一个NPC能有什么坏心思穿越三代:开局我火你悔NBA:开局一张三分体验卡超级打工仔万物品鉴系统氪金十亿,游戏开始修为反馈!腹黑王爷又吃醋了我能看透卡牌的隐藏说明掌上娇娇小说全文免费阅读世子妃你又被挖墙脚了云婷君远幽盖世小村医足球生涯:从躺冠到成为传奇孤城重启全民游戏:我能召唤赤月恶魔从贞子开始制作怪谈游戏三无勇者搞事中我在异世无限氪金爽翻天!我靠美食成为全朝首富豪门婚色:总裁娇妻太迷人和平精英之逆风而起吐槽篮球仙帝的自我修养卓简傅衍夜你的情深我不配全文免费阅读大结局阮白慕少凌一胎双宝总裁大人夜夜欢免费阅读全文被龙之队开除,我成了禁区之王次元之王者降临变身萌主播:大神,站住!绝品保镖美总裁三国神话世界序列游戏,从抽取道具开始联盟:开局辅助水子哥魅魔君主网游:什么法师!你爹我是火箭军冒牌职业大神
半壁书屋最新小说:网游:敢惹他?内裤都给你偷没了召唤万界军团史上最贱NPC王者:这个选手,正得发邪游戏降临:从隐藏职业开始封神人在巴黎奥运,班主任催交作业B级天赋,一样可以登顶列车求生:无挂求生nba最强球星詹姆斯哈登夏日狂响曲开局零幸运值?别慌我有任意门校花别撩我,我只想打篮球!NBA:穿越神医变教练带飞姚明网游之独步逍遥让你当王者陪玩,竟把校花泡了?都重生了,还让我从头开始网游之剑界我只是个NPC啊!学生议事录成为领主后,觉醒了进化天赋玩三国志战略版,分币不充闺蜜坑我玩盾卫七零娇娇一撒娇,腹肌硬汉顶不住全英雄绝活,我上分如喝水全民转职:枪炮师弱?我有东风狙升级,升级,还是升级!网游:开局野人,我能无限进化玄幻网球:拒绝系统成为世界最强灵界游戏,当炮灰的我再次重生了NBA:老詹要和我抱团星环游戏人在斗破写日记,薰儿蚌埠住了!斗罗:穿越天斗三皇子,多子多福寻宝:从小镇探险家开始里斯本竞技出道,开启葡萄牙王朝挂机游戏通往异世界进入求生游戏后,变成欧皇了!【网游之永恒】开局召唤精灵公主迷雾世界:我觉醒山海经征服诸天诺克萨斯的荣光绿茵梦之少年热血网游:御剑神刀全民领主:我打小日子就能变强综漫:从尸魂界开始砍穿万界战争雷霆之从成为地狱猫车长开始穿越海岛求生,误惹红发疯批大佬全民网游:我开局五大职业斗罗:武魂千仞雪,震惊比比东暗黑小佣兵NBA最强主教打散N个三巨头