半壁书屋 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

对于一个包含至少2个集合的、对并运算封闭的有限集合族,至少存在一个元素,使得它在至少一半的集合里出现过。

我们来解读一下这个猜想说的啥。

首先集合,就是包含了一系列元素的合集,这里面的元素既可以是数字,也可以是变量等。

例如这是一个我们常见的数集,而且是有限的(只包括3个元素):{1,2,3}

至于无限数集,就像是自然数集、有理数集、整数集这种由无限个元素组成的集合。

当然,集合也有集合,它们组合起来,就可以被叫做集族,例如下图中F就是一个集族:

在这些集族中,有一类特殊的集族对并运算封闭。

对集族中的集合而言,并运算就是对两个集合求并集;至于并运算封闭,即是指在对任意两个集合进行并运算后,其结果仍然在这个集族中。

以下面这个集族为例:{1}{1,2}{1,2,3}{1,2,3,4}

无论是对{1}、{1,2}求并集,还是对{2,3,4}、{1}求并集,还是对{1,2}、{2,3,4}求并集……任意两个集合求并集,其结果都会在这个集族中。

所以,上面这个集族就符合并封闭集合这一要求,而并封闭猜想也正是基于此而提出。

值得注意的是,这一猜想中的“一半”是紧致的,毕竟对于任何一个集合的子集族,所有的元素恰好在一半的集合里出现过。

它于1979年被一个叫péter Frankl的数学家提出,所以也一度被叫做Frankl猜想。

看起来似乎不难,然而到实际解决时,一众数学家才发现这并不简单。

达特茅斯学院数学教授peter winkler曾经在1987年就这个猜想给出尖锐的评价:

并封闭集合猜想确实很有名,除了它的起源和它的答案。

为了解决这个问题,数学家们也已经尝试过不少方法。

例如有人试着给猜想加上一些限制条件,让它在这些情况下成立。

像是将它和图论中的二分图(bipartite Graph)联系起来,证明具备其中某种性质的集族,在这个猜想的条件下成立。

又或是给其中的元素加以限制,再加以证明……

bUt,无论是哪种方法,距离真正需要证明的猜想都还差不少距离。

来自哥伦比亚大学的助理教授will Sawin对此评价称:

它看起来似乎是个不难解决的东西,毕竟长得和那种“容易解决的问题”很像。

然而,如今却没有任何一个证明能真正搞定它。

问题就这样进度缓慢,直到2022年秋天,谷歌研究员Justin Gilmer借着朋友结婚的契机,回到了罗格斯大学校园。

Gilmer回母校的时间是2022年10月,此时距他毕业离开数学学术圈,已过去7年。这些年来,他自觉无心专注纯数学领域,转而自学编程,投身了It行业。

此次返校,他拜访了导师萨克斯,还四处转了转。

就在散步中,他突然回忆起——当年自己徘徊于校园小径,苦苦思索的一个数学问题:

没错,就是那个对“并封闭集合猜想”的证明。

读博期间,Gilmer绞尽脑汁,花了一整年时间却毫无进展,只是搞明白了为什么这一看似简单的问题难以解决。

为此,他还去找过导师萨克斯。但导师也曾在该问题上停滞不前,因而他既不看好Gilmer的研究,也不愿重新碰这一领域。据Gilmer回忆,当时导师差点把他赶出房间。

但现在,重回校园转一圈的Gilmer有了个新想法:用信息论及相关原理解决并封闭猜想问题。

Gilmer的思路是找反例。

根据并封闭集合猜想,一个正常的并封闭集族中,至少应该有一个元素在多于一半的集合中出现。

既然如此,只要想办法构造一个特殊的集族,里面没有一个元素出现在超过1%的集合中,这个猜想就会被证伪,反之如果构造不出来,那么猜想就可能成立。

现在,我们用信息论视角看这一猜想:

正常来说,如果从集族中任意挑出两个集合,这两个集合取并集后,并集中的元素比原来两个集合更多,其信息熵应该比原来的单独两个集合更低。

然而如果基于“没有一个元素出现在超过1%集合”这个限制条件,任意两个集合取并集后,计算出来的信息熵竟然比原来的单独两个集合更高。

这显然是不可能的,因此不存在这么一个特殊的集族,Glimer的反例也没有找到。

但这也就意味着在“并封闭”集族中,至少存在一个元素,会出现在超过1%的集合中。

2022年11月16日,Gilmer将这一思路写成论文,发表在了arxiv上。

当然,他这篇论文还不是“完全体”,也就是说并没有完全证明并封闭集合猜想——

毕竟这只是至少1%,还不意味着原来的并封闭集合猜想中的至少50%就成立。

但这个新思路已经足够让学界震动。

普林斯顿大学数学家Ryan Alweiss评价“引入信息量”这一操作:非常聪明。

仅仅几天后,就有3个不同的数学研究组基于他的研究,先后发表了研究论文,随后也有更多研究者跟进,他们所在院校机构有牛津、普林斯顿、哥大、布里斯托等。

在后续研究中,对“并封闭集合猜想”的概率值证明,被推进到了38%。

令这些数学家好奇的是,基于Gilmer的研究,他自己上手将概率值推进到38%并不难。

对此,Gilmer表示,自己已经五年多没碰数学了,确实不知道如何进行分析工作来将其进一步推进下去。

不过,他也认为,正是因为对相关数学方法的生疏,让他跳出了常理,用圈外办法取得突破。

半壁书屋推荐阅读:异类玩家的自我修养如懿传卫嬿婉重生之浴血而归诡案奇闻给将军送粮后,竟成了我的小娇夫【综漫】我不是XXX镇魂:赤帝传说EXO之故事的恶女上门女婿的咸鱼生活假太监:永寿宫偷吃,撞破皇帝女儿身四合院:傻柱重生,收养破局红楼之林家有嫡子警校毕业后,火速进部当厅长开局就被赶出豪门白蔹宋泯三生三世梦彻骨四合院:刘家长子刘光齐还珠之情深似海我在全息武侠游戏里种田汉儿不为奴诡盗奇谈融入精灵世界法力无边高大仙进球吧!教练来自蓝星的乐子人删号回村后,我好像变坏了我们滔搏有救啦!足球:系统调试了两年半穿越进传奇,我的爆率百分之三百美女公寓月亮崇拜少司命英雄联盟之传奇归来我能看透卡牌的隐藏说明全能游戏设计师第二人格不对劲绝地求生之系统无敌禁区之狐胡莱网游之双星传说奥特:震惊!希卡利隐藏的阴谋梦与录神梦说,我有主角之资王者的脚下潜伏深渊在竞技场毁天灭地绝对搞错了什么穿成侯门主母,我成了京圈白月光白夜之神启重生:杀穿末日游戏洪荒:抱错大腿怎么办?欢迎来到诡梦世界求生游戏:种田是需要耐心的NBA:五双神迹谛造者补天记惹他?他隐藏职业,一人屠一城!
半壁书屋搜藏榜:网游:天赋太强,游戏开局就维护开局滋崩,我在派派疯狂猎杀!篮坛传奇富豪超能进化:我的兵种有点贵黑境时代西游之从加入诸天聊天群开始英雄联盟之传奇归来我真的不修仙从一级玩家,重新开始全境入侵又被电竞狙神带飞了末日降临之天赋异禀我在火影成立夸夸教玄门大佬混都市网游之我的世界什么叫开挂型射手啊我一个NPC能有什么坏心思穿越三代:开局我火你悔NBA:开局一张三分体验卡葬送的芙莉莲:永恒之旅超级打工仔趣谈百家姓原神:在提瓦特养老加入了聊天群万物品鉴系统氪金十亿,游戏开始修为反馈!腹黑王爷又吃醋了我能看透卡牌的隐藏说明掌上娇娇小说全文免费阅读世子妃你又被挖墙脚了云婷君远幽盖世小村医网游:我觉醒了两个隐藏职业足球生涯:从躺冠到成为传奇孤城重启全民游戏:我能召唤赤月恶魔从贞子开始制作怪谈游戏三无勇者搞事中我在异世无限氪金爽翻天!我靠美食成为全朝首富豪门婚色:总裁娇妻太迷人和平精英之逆风而起吐槽篮球仙帝的自我修养卓简傅衍夜你的情深我不配全文免费阅读大结局阮白慕少凌一胎双宝总裁大人夜夜欢免费阅读全文被龙之队开除,我成了禁区之王次元之王者降临变身萌主播:大神,站住!绝品保镖美总裁三国神话世界序列游戏,从抽取道具开始
半壁书屋最新小说:传颂之名海上冰路,我能召唤空投物资管够全职体校:国家队全是我的学生浣碧在钮祜禄氏做嫡女华夏神农虫族上将的雄主脾气不好科幻武侠之星际剑侠传穿越之盛世医妃林晚第五人格:各自安好超神之签到崛起入住黄金庭院后,爱莉拉我直播斩神:我的发小会甩锅眉庄:纯元不死你等不过尔尔星铁:开局骷髅,被银狼捡走我若为星君为月反派宝贝眼一红!各路大佬哄慌了直男超甜,男主疯狂献上女主剧本哪吒之魔童闹海:传奇重生边水猜叔,掌心的玫瑰区区如懿,打就打了带系统的糖糖全民游戏化,只有我唯一职业对强取豪夺者强取豪夺与donk的CS2之旅全息挑战:大学生无限求生游戏火影之宇智波多子多福风流短跑之神从梦幻西游开始的游戏人生原神:更新后手机连接了提瓦特云闪富的生命盲盒之旅星轨战纪:全能指挥官文案馆全剧终主人轻点罚,十七还不够听话吗地下城重生:冷言的逆袭联盟:重生韩国女主播,爆火全网HP:斯莱特林贫困生青春怎么选都有遗憾网游之刀问江湖逆天装备HP就你叫伏地魔?黑魔王?这也不够黑啊韩娱:南柯一梦独宠敌国质子,病弱太子颠覆朝堂新还珠格格之人儿归家星铁:小判官身边的傀儡师迷雾求生:从升华万物开始无敌塔防狂潮,我有无限装备栏!四合院:苟且愉生火影:变身宇智波怪力小萝莉时空中的深情沪圈霸总说他后悔了