半壁书屋 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

“我试试。”徐川回道。

尽管纸卡上的题他能解出来,但他也没有将话说满,只是表示自己先尝试一下。

如果用常规的方法,他肯定是能做出来的。

但从张伟平刚刚的话语中,徐川知道他关心的应该是晚上解题时使用的那种方法。

现在自己解题,应该也要从这种方法上出发。

而这种将狄利克雷函数转变成积分的思路,他也才研究出来不久的,都还没有发表过,不知道能不能应用于这种数学规律题上。

......

注意力重新回到手中的卡纸上,徐川认真的将卡纸上的题目重新阅读了一遍,然后陷入了沉思。

一旁,张伟平紧张又期待的看着。

他想上前去观察,但又担心干扰到了徐川解题。

今晚国集学生做的那三道题目,的确就是从纸卡上拆解下来的。

也正是如此,他才那么重视这种新的解题方法。

解题的方法和步骤越是简便,对应的数学模型也就越容易编写出来,这对于信息战进行数学建模的重要性极高。

徐川倒是没想那么多,虽说这是他的目标,但他暂时还没将这事联系到Imo之后的信息战上面去。

现在才国集,距离Imo举办还有几个月的时间。

他只当这种新的数学解题法引起了张伟平的注意,毕竟对于任何一个数学家来说,一种全新的解题方法都是重点关注的对象。

就像之前省集训的时候,他解物理题用了一种新方法立刻就引起了许成的注意一样。

......

思虑了一会,徐川拾起手中的纸笔开始动手演算。

解:从拉普拉斯变换出发,得L(f(t)\/t)(s)=∫?sL(f(t))(9)pd......

由此,可对狄利克雷积分可以得到∫?sL(f(t)....

通过双重有限积分进行计算,该积分次序得(I?=∫?s∫??....)

证:......

简化法解狄利克雷函数的关键在于将其转变成狄利克雷积分,这一步是通过数学分析或者复分析等方法进行得。

但狄利克雷函数作为一个处处不连续的可测函数,数学分析和复分析法并不是所有情况都适用的。

至少在这道完整的题目中,徐川找不到利用数学分析和复分析法的地方。

思虑了一会后,他决定通过拉普拉斯变换和双重有限积分来进行扭曲这道狄利克雷函数规律。

这种办法虽然可行,但麻烦点也不小。

最麻烦的地方在于题目中包含的进制变换,它在计算数值时,需要将数学常用的十进制转变成二进制,这是很麻烦的地方。

好在他之前学过一段时间的二进制,才能不中断计算,一路顺畅的将狄利克雷函数转变成狄利克雷积分。

将函数转变成积分后,接下来的思路就顺畅多了,利用复变函数与积分进行变换,然后求解就行了。

花费了一点时间,徐川将答案计算了出来。

不过计算出来的答案反倒让他感到很是疑惑。

(116.72)(39.56)(14.1225)!

三组数字,很奇怪的答案,至少他从没见过这样的。

之前就说过了,狄利克雷函数的性质相当特殊,它是一个定义在实数范围上、值域不连续的函数,而且是一个偶函数。

正常来说,它的答案数值是会平均对称分布在Y轴两段,也就是函数f(x)的定义域内任意的一个x,都有f(x)=f(-x)。

但很明显上面的三组数值完全不符合狄利克雷函数的规律。

但他又算出来了这个答案,这是个什么情况?

盯着求解出来的答案,徐川有些摸不着头脑,一时间,他甚至有些怀疑是不是自己求解的过程哪里弄错了,才会得到这样一组数字。

认真的将自己的求解过程重新验证一边后,他终于确定自己的求证过程并没有什么问题,有问题的是题目。

“张老师,您看看这个答案是不是对的,我怎么感觉有点问题?”

确定自己的解答步骤没有问题后,徐川起身将手中的稿纸递给了站在一旁的张伟平。

“解出来了吗?”

张伟平有些恍惚,看了眼手机,时间大概过去了十五分钟左右。

十五分钟,就能破译出来一道加密讯息?

这速度,比他们这些信息安全司里面的大部分数学教授都要快了。

这可能吗?

一个高中生,数学能力比大部分的数学教授都要强?

还是说这种解题方法真的有这么简便?亦或者,是他没解出来,写了个错误的解答过程和答案?

张伟平情不自禁的咽了下口水,伸手接过稿纸看去。

他没先去看证明过程,而是直接看向了最底部的答案。

(116.72)(39.56)(14.1225)!

答案完全正确!

看着稿纸上的三组数字,张伟平呼吸顿时沉重了起来。

答案正确,那么过程大概率也会是正确的。

没有正确的推到过程,随便编写几个答案是不可能刚好对上的这组答案的。

如果过程正确,那这种解题思路和方法......

......

脑海中念头划过,张伟平迅速将目光对上了占据大半页篇幅的求证过程。

半个小时过去,他终于长舒了一口气,抬起头目光熠熠的盯着徐川,像看怪物一样。

眼前的这名学生,他现在是真的看不懂了。

对于绝大部分的高中生,哪怕是能杀入Imo的竞赛生来说,高中三年也基本都是打基础的阶段。

就算是天才,能在高中阶段积累足够的大学知识,但积累知识和要将这些知识如鱼得水般运用起来,也完全是两个不同的概念。

更何况是这种创新,就更难得了。

如何没有将脑海中的知识融汇贯通,想要创新是不可能的事情。

更关键的是,眼下这种解题方法并不是单纯的数学领域的知识。

利用拉普拉斯变换和双重有限积分将狄利克雷函数转变成狄利克雷积分,再运用复变函数求积分,然后求解。

这种解题思路,虽说证明过程是单纯的数学语言,但思路却是融合了物理领域的阻尼自由振动方程计算临界和线性无关特解方面的计算公式

相比较纯数学领域的创新,这种创新难度更高。

毕竟一个人精通的知识区域一般都只有一个,能将数学物理融会贯通的天才极少。

就算有,也一般都是进入大学甚至研究生后才展露出这种天赋。

高中阶段,他想都不敢想。

.....

半壁书屋推荐阅读:变成丧尸了,空间有何用?无限末世:开局掠夺丧尸词条我的装备是一辆浮空单车军婚:医学天才在七零靠空间开挂海贼:混在草帽团的神帝国的朝阳污核之众穿成豪门逆子他后妈末世重生之带着全村来种田末世降临:别人变异我变身巨兽从骷髅岛开始我在末世凭实力躺赢娇闺风月快穿之拯救攻略对象总是黑化影视诸天签到者周游末世天灾,我有无限超市屯满物资忍界修正带末世苟出一片天重生末世:开局中奖3000万末世:多子多福,极品美女这样用穿越24世纪的银河系末世重生:我获得了一座监狱末日无限副本,这一枪你可能会死末世之冰山战神港综世界的警察反派BOSS娘提线木偶她活了御兽:我在电影里获得力量丧尸爆发,而我有一辆大卡车古玩人生重生回末世后我又穿越了踏星一睡万年宝可梦:人形精灵竟是我自己国运:从末世开始带飞大夏再世嫡妃魔女朋克2840无限之乐土游戏快穿,这恋爱脑我不当了快穿之不服来战呀穿越末日:我有系统商城末世重生,我用修改器修改万物科幻:我的老师是超级星舰快穿:开局一座山,物资全靠抢!天灾后我靠异能种田发家重生归来,我携皇叔谋山河不义超人从漫威开始基因病毒之末世危机末世之兄弟把我当老婆养长生药缘
半壁书屋搜藏榜:身为诡异的我总想伪装成人规则怪谈:我和同桌一起快穿不要走入那团雾时空之巅星际女王养成记我要成为猎魔士无敌从病毒游戏开始完体巨兽从骷髅岛开始末世苟活路我曾在星际翱翔成龙历险记之恶魔能力者蓝色家园梦穿越剧情的辅助系统重掌天宫快穿之我成了系统连续剧剧场之带着基连穿越最强复制霸主快穿:全位面跪求疯批宿主做个人快穿日记之炮灰的逆袭战域时代:开局觉醒神级天赋美漫悍刀行超灵气时代虫灾,我在五百年后成神木叶之圣杯GO少女的快穿之旅末世船王超级黄金手我都重生了,还打什么工!末日救赎:世界系统快穿女主是酒鬼末世降临:从与美女明星荒岛求生开始我本肥宅,奈何丧尸围城盗笔之任务进度条异世祖巫星海征服者末世!秩序重启港综之我是警察末世:洗劫海外万亿物资我无敌了从车匪路霸开始的狂野之路聚能有机物之灾末世幼崽联盟别担心我是医生序列我在末世凭实力躺赢重生末世苏姐带着空间苟起来我在惊恐游戏世界当商人末世之曲终化神快穿之开局就是小作精欢想世界我反派,选择摆烂,绝不当沸羊羊
半壁书屋最新小说:末世游戏降临,我却开了透视基因高武时代开局双异能,我在诡异世界成神纪年前记末世:从异虫开始,天灾末日穿越星际兽世,小雌性她可盐可甜丧尸潮里美少女枪战与种田破碎的时空异世探索三天穿越一次,末世宝藏随便拿无敌之我在末世捡垃圾末世:我的公寓很安全重生之天灾末世前森居物语破晓孤星末日领主:我的玩家有亿点点强末世小民苟活末世靠美女不断变强末世天灾,囤满物资就摆烂末世:我猎杀丧尸,你们怕什么?星际奇遇记夜幕汹涌末日战争降临三星纪:古蜀文明的宇宙征途愚公重生:断代星球全民领主,开局地球炸了最后的御者末世!开局自选武器从黑道到军阀进击的人类,反攻异族母星末世修罗血统怦然兴动末世重生:龙兴纪元末世抽取轮盘计划内的末世奴隶阿飞:励志人生克系恐惧末世舰娘宴者彼岸:我必于你们之前到达末世,我有枪有碉堡,惹我都得死烈日森林众生若尘微尘:时空之旅末世双杰MATE·智能对峙智芒破晓演变战役肌肉肌肉肌肉肌肉肌肉肌肉肌肉红颜星痕末世行车:我的车是堡垒黎明星海梦归星海