半壁书屋 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

向德利涅教授请了一周的假期后,徐川潜在宿舍中整理着米尔扎哈尼教授留给他的稿纸。

这次整理,就不是粗略的过一遍了。

而是详细的去学习这些稿件中的知识,将其吸收转化成自己的智慧。

一名菲尔兹奖临终前的遗留,尽管只是一部分,也足够一个普通的数学家研究数年甚至是半生了。

对于徐川而言,这些遗留的稿纸中的计算并不是什么珍贵的东西,有数学基础,很多人都能计算推衍出来。

但这些公式与笔迹中遗留的思想和数学方法与路线,却弥足珍贵。

这些东西,哪怕还未成型,仅仅只是一些思路,也是很多数学家终一生都不见得能做出来的成果。

毕竟在所有的自然科学中,若要说依赖天赋的程度,数学无疑是站在金字塔尖的独一档。

哪怕是物理和化学,在依赖天赋的程度上都略逊色于数学。

可以说没有什么其他学科比数学更吃天赋了。

这是一门需要强大逻辑思维才能‘真正’学好的科目。

数学问题往往需要你发挥一定的创造力,从而解决陌生的问题。

如果老师的水平不够,而你又没能自己找到正确的方法和方向,很有可能白努力,越学越崩溃。

不止要有正向思维还要有逆向思维,在每个知识类别都有很多的公式,而这些公式之间却还有着巧妙的联系;记忆、计算、论证、空间、灵活、转变、各种你能在其他科目上找到的技巧几乎全部都会在数学上体现。

很多网友说,被数学支配的恐惧与年龄无关,从小时候自己学习怕,长大后辅导孩子依旧还怕。

也有网友说,人被逼急了什么事都能做得出来,数学题除外。

尽管这只是一些玩笑话,但数学确实是一门没有天赋、无法学好的学科。

或许你能在大学之前,依靠各种题海战术,名师的讲解拿到高考的满分,但进入大学或者更深入的学习后,你很快就会跟不上节奏。

哪怕花费再多的时间,尽最大努力,也不一定能理解某些数学主题的含义,也无法学习应用那些比高中更复杂的定理和公式。

比如勾股定理,这是进入初中就会学习的东西。

勾三股四弦五。

这是很多人的回忆。

然而很多人也就记住了这一句,这是最常见的勾股数。

但是后面呢?

(5,12,13)(7,24,25)(9,40,41,)......2n+1,2n^2+2n,2n^2+2n+1.......

这些是最最最基础的数学,也不知道还有多少人记得。

恐怕十分之一的人都没有,更别提与勾股数相关联的其他数学公式定理与数据了。

如果在数学上没有天赋,学习起数学来,恐怕会相当痛苦。

那种一堂课掉了一支笔,捡起来后,数学就再也没跟上过节奏的,也不是什么离奇的事情。

.......

宿舍中,徐川一边整理着米尔扎哈尼教授留给他的稿纸,同时也在整理着自己近半年来所学习的一些知识。

“代数几何的一个基本结果是:任意一个代数簇可以分解为不可约代数簇的并。这一分解称为不可缩的,如果任意一个不可约代数簇都不包含在其他代数簇中。”

“而在在构造性代数几何中,上述定理可以通过 ritt-吴特征列方法构造性实现,设s为有理系数 n个变量的多项式集合,我们用 zero(s)表示 s中多项式在复数域上的公共零点的集合,即代数簇。”

“.......”

“如果通过变量重新命名后可以写成如下形式:

a?(u?,···, uq, y?)=i?y??d?+y?的低次项;

a?(u?,···, uq, y?, y2)= i?y??d?+y?的低次项;

······

“ap(u?,···, uq, y?,···, yp)= ip?yp+yp的低次项。”

“......设 as ={a1···, ap}、j为 ai的初式的乘积.对于以上概念,定义sat(as)={p|存在正整数 n使得 j np∈(as)}........”

稿纸上,徐川用圆珠笔将脑海中的一些知识点重新写了一遍。

今年上半年,他跟随着的德利涅和威腾两位导师,学到了相当多的东西。

特别是在数学领域中的群构、微分方程、代数、代数几何这几块,可以说极大的充实了自己。

而米尔扎哈尼教授留给他的稿纸上,有着一部分微分代数簇相关的知识点,他现在正在整理的就是这方面的知识。

众所周知,代数簇是代数几何里最基本的研究对象。

而在代数几何学上,代数簇是多项式集合的公共零点解的集合。历史上,代数基本定理建立了代数和几何之间的一个联系,它表明在复数域上的单变量的多项式由它的根的集合决定,而根集合是内在的几何对象。

20世纪以来,复数域上代数几何中的超越方法也有重大的进展。

例如,德·拉姆的解析上同调理论,霍奇的调和积分理论的应用,小平邦彦和斯潘塞的变形理论等等。

这使得代数几何的研究可以应用偏微分方程、微分几何、拓扑学等理论。

而这其中,代数几何的核心代数簇也被随之应用到其他领域中,如今的代数簇已经以平行推广到代数微分方程,偏微分方程等领域。

但在代数簇中,依旧有着一些重要的问题没有解决。

其中最关键的两个分别是‘微分代数簇的不可缩分解’和‘差分代数簇的不可约分解’。

尽管ritt等数学家早在二十世纪三十年代就已经证明:任意一个差分代数簇可以分解为不可约差分代数簇的并。

【鉴于大环境如此,本站可能随时关闭,请大家尽快移步至永久运营的换源app,huanyuanapp 】

但是这一结果的构造性算法一直未能给出。

简单的来说,就是数学家们已经知道了结果是对的,却找不到一条可以对这个结果进行验算的路。

这样说虽然有些粗糙,但却是相当合适。

而在米尔扎哈尼教授的稿纸上,徐川看到了这位女菲尔兹奖得主朝这方面努力的一些心得。

应该是受到了此前他在普林斯顿交流会上的影响,米尔扎哈尼教授在尝试给定两个不可约微分升列 as1, as2,判定 sat(as1)是否包含 sat(as2)。

这是‘微分代数簇的不可缩分解’的核心问题。

熟悉了整个稿纸,并且跟随德利涅教授在这方面深入学习过的他,很容易的就理解了米尔扎哈尼教授的想法。

在这个核心问题中,米尔扎哈尼教授提出了一个不算全新却也新颖的想法。

她试图通过构建一个代数群、子群和环面,来进一步做推进。

而建立这些东西所使用的灵感和方法,就来源于他之前在普林斯顿的交流会以及weyl-berry猜想的证明论文上。

......

“很巧妙的方法,或许真的能将代数簇推广到代数微分方程上面去,可能过程会稍微曲折了一点......”

盯着稿纸上的笔迹,徐川眼眸中流露出一丝兴趣,从桌上扯过一张打印纸,手中的圆珠笔在上面记录了起来。

“.....微分代数簇的不可缩分解问题从广义上来讲,其实已经被ritt-吴分解定理包含在内了。”

“但是ritt-吴分解定理在有限步内构造不可约升列ask,并构建了诸多的分解,而在这些分解中,有些分支是多余的.要想去掉这些多余分支,就需要计算 sat(as)的生成基了。”

“......因为归根到底,它最终可降解为ritt问题。即:a是含有 n个变量的不可约微分多项式,判定(0,···, 0)是否属于 zero(sat(a))。”

“......”

手中的圆珠笔,一字一句的将心中的想法铺设在打印纸上。

这是开始解决问题前的基本工作,很多数学教授或者科研人员都有这样的习惯,并不是徐川的独有习惯。

将问题和自己的思路、想法清晰的用笔纸记录下来,然后详细的过一遍,整理一边。

这就像是写小说之前写大纲一样。

它能保证你在完结手中的书籍前,核心剧情都是一直围绕主线来进行的;而不至于离谱到原本是都市文娱文,写着写着就修仙去了。

搞数学比写小说稍稍好一点,数学不怕脑洞,怕的是你没有足够的基础知识和想法。

在数学问题上,偶尔一现的灵感和各种奇思妙想相当重要,一个灵感或者一个想法,有时候就可能解决一个世界难题。

当然,因为错误的想法,而将自己的研究陷入死路的也不少。

放到网文圈,这大抵就是写了一辈子小说,扑了一辈子还是个签约都难的小菜鸟,或者说写了无数本,百万字之前必定蹦书那种。

.....

将脑海中的思路整理出来后,徐川就暂时先放下了手中的圆珠笔。

代数簇相关的东西,仅仅是米尔扎哈尼教授留给他的稿纸上的一部分知识而已。他现在要做的是将这几十张稿纸全都整理出来,而不是一头扎进新的问题研究中。

尽管这个问题挠的他心头有些痒痒,恨不得现在就开始研究,但做事还是得有始有终。

花费了几天的时间,徐川妥善的将米尔扎哈尼教授留给他的稿纸全都整理了出来。

三四十页稿纸,看起来很多,真正的整理完成后,用不到五页纸就记录完整了。

原稿纸上真正精髓的想法和知识点其实并不多,多的是一些米尔扎哈尼教授随笔的计算数据,有用的主体基本都来源于weyl-berry猜想的证明论文上使用的方法。

当然,米尔扎哈尼教授的学识肯定不止这点,但两人的交集就这点。

米尔扎哈尼教授能将这些东西遗留给他,徐川心里很感激。

因为这些稿纸,她完全可以留给自己的学生或者后人。

依照这些东西,如果继承者有一定能力的话,是有很大的概率是能继续在这上面做出些成绩出来的。

但米尔扎哈尼教授并没有私心,反而将这些东西送给了他这个仅仅见过一两面的‘陌生人’。

这大抵就是学术界的光辉吧。

.......

将有用的东西整理出来后,徐川小心的将米尔扎哈尼教授留给他的原稿纸收纳起来,放进专门存放重要资料的书柜中。

这些东西,用再尊重的态度去对待都不为过,而且将来回国的时候,他必定会带回去。

处理完这些,徐川重新坐回了桌前。

像德利涅教授请的假还有两天的时间,与其提前回去,不如利用这个时间对‘微分代数簇的不可缩分解’问题做一下尝试。

这个问题的确很难,但是 ritt-吴分解定理已经将相应的微分代数簇分解为不可约微分代数簇,剩下的,就是进一步得到不可缩分解了。

如果在没有得到米尔扎哈尼教授的遗留前,他大抵是不会有朝这方面研究的想法的。

原本他的目标是朗兰兹纲领中的自守形式与自守l函数,但现在,原先的目标稍稍放一下也没有关系。

而且‘微分代数簇的不可缩分解’领域是他今年上半年和德利涅教授学习的数学领域之一。

就用这个问题,来检验一下他的学习成果好了。

想着,徐川嘴角扬起了一抹自信的笑容。

用一个世界级的数学难题,来当做学习成果的检测题,这种话说出去大概率会被其他人当做狂妄自大。

但他有这样的自信。

这不是这辈子学习数学带来的,而是上辈子一路攀登高峰养成的。

......

从桌上取过一叠稿纸,徐川将之前整理出来的思路又看了一遍,而后沉吟了一下,转动了手中的圆珠笔。

“引入:设k是一个域,假设k是代数闭的,设g是k上的连通约化代数群,设y是g的borel子群的簇,设b∈y,设t是b的极大环面,设n是g中t的正规化子,设w = n\/t是weyl群......”

“对于任何˙ b,其中w∈n代表w.......”

“设c∈ w,设d(l(w);w∈ ={ w∈c;l(w)= dc}.....”

“......存在唯一的γ∈ g,使得γn gw?之类的

每当γj∈ g,γjn gw?,有γ?γ j。且,γ只取决于c......”

.......

ps:不知道怎么回事,之前没被审核过,最近连着又被审核了一次,晚上修改检查了好久才重发出来,今天晚上还有一章的。

半壁书屋推荐阅读:变成丧尸了,空间有何用?无限末世:开局掠夺丧尸词条我的装备是一辆浮空单车军婚:医学天才在七零靠空间开挂海贼:混在草帽团的神帝国的朝阳污核之众穿成豪门逆子他后妈末世重生之带着全村来种田末世降临:别人变异我变身巨兽从骷髅岛开始我在末世凭实力躺赢娇闺风月快穿之拯救攻略对象总是黑化影视诸天签到者周游末世天灾,我有无限超市屯满物资忍界修正带末世苟出一片天重生末世:开局中奖3000万末世:多子多福,极品美女这样用穿越24世纪的银河系末世重生:我获得了一座监狱末日无限副本,这一枪你可能会死末世之冰山战神港综世界的警察反派BOSS娘提线木偶她活了御兽:我在电影里获得力量丧尸爆发,而我有一辆大卡车古玩人生重生回末世后我又穿越了踏星一睡万年宝可梦:人形精灵竟是我自己国运:从末世开始带飞大夏再世嫡妃魔女朋克2840无限之乐土游戏快穿,这恋爱脑我不当了快穿之不服来战呀穿越末日:我有系统商城末世重生,我用修改器修改万物科幻:我的老师是超级星舰快穿:开局一座山,物资全靠抢!天灾后我靠异能种田发家重生归来,我携皇叔谋山河不义超人从漫威开始基因病毒之末世危机末世之兄弟把我当老婆养长生药缘
半壁书屋搜藏榜:身为诡异的我总想伪装成人规则怪谈:我和同桌一起快穿不要走入那团雾时空之巅星际女王养成记我要成为猎魔士无敌从病毒游戏开始完体巨兽从骷髅岛开始末世苟活路我曾在星际翱翔成龙历险记之恶魔能力者蓝色家园梦穿越剧情的辅助系统重掌天宫快穿之我成了系统连续剧剧场之带着基连穿越最强复制霸主快穿:全位面跪求疯批宿主做个人快穿日记之炮灰的逆袭战域时代:开局觉醒神级天赋美漫悍刀行超灵气时代虫灾,我在五百年后成神木叶之圣杯GO少女的快穿之旅末世船王超级黄金手我都重生了,还打什么工!末日救赎:世界系统快穿女主是酒鬼末世降临:从与美女明星荒岛求生开始我本肥宅,奈何丧尸围城盗笔之任务进度条异世祖巫星海征服者末世!秩序重启港综之我是警察末世:洗劫海外万亿物资我无敌了从车匪路霸开始的狂野之路聚能有机物之灾末世幼崽联盟别担心我是医生序列我在末世凭实力躺赢重生末世苏姐带着空间苟起来我在惊恐游戏世界当商人末世之曲终化神快穿之开局就是小作精欢想世界我反派,选择摆烂,绝不当沸羊羊
半壁书屋最新小说:末世游戏降临,我却开了透视基因高武时代开局双异能,我在诡异世界成神纪年前记末世:从异虫开始,天灾末日穿越星际兽世,小雌性她可盐可甜丧尸潮里美少女枪战与种田破碎的时空异世探索三天穿越一次,末世宝藏随便拿无敌之我在末世捡垃圾末世:我的公寓很安全重生之天灾末世前森居物语破晓孤星末日领主:我的玩家有亿点点强末世小民苟活末世靠美女不断变强末世天灾,囤满物资就摆烂末世:我猎杀丧尸,你们怕什么?星际奇遇记夜幕汹涌末日战争降临三星纪:古蜀文明的宇宙征途愚公重生:断代星球全民领主,开局地球炸了最后的御者末世!开局自选武器从黑道到军阀进击的人类,反攻异族母星末世修罗血统怦然兴动末世重生:龙兴纪元末世抽取轮盘计划内的末世奴隶阿飞:励志人生克系恐惧末世舰娘宴者彼岸:我必于你们之前到达末世,我有枪有碉堡,惹我都得死烈日森林众生若尘微尘:时空之旅末世双杰MATE·智能对峙智芒破晓演变战役肌肉肌肉肌肉肌肉肌肉肌肉肌肉红颜星痕末世行车:我的车是堡垒黎明星海梦归星海