半壁书屋 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

柯尔莫哥洛夫对阿诺德说:“我开始想关于n体力学的问题,我们未来在研究动力学系统的时候,必须要面对这个严肃的问题。”

阿诺德说:“n体问题属于不可积分的难题,只能寻求级数解。换言之,这类系统无法根据初始条件求出描述系统未来确定性行为的精确解。力学系统一般说来不可积分,可积分系统只是极少的特例,并指出共振项可能影响级数的收敛性。”

柯尔莫科洛夫说:“我们要研究弱不可积系统问题。”

阿诺德说:“哈哈,柿子捡软的捏。”

柯尔莫哥洛夫说:“在扰动较小也可以说非线性程度比较小、V足够光滑、离开共振条件一定距离等三个条件下,对于绝大多数初始条件,弱不可积系统的运动图像与可积系统基本相同。”

阿诺德说:“在满足一定条件下近可积系统绝大多数解是规则的,其相轨迹被限制在一个由n个运动不变量决定的n维环面上,该环面与可积系统的环面相比有微小的变形,但拓扑结构不变,称为不变环面;确切些说,相空间分成大小两组体积非零的区域。”

柯尔莫哥洛夫说:“在大区域中仍然保持着与可积系统类似的环面结构;也有一些“随机”解,但被限制在环面之间,成为“随机”层。”随机二字打上引号表示并非真正的随机,而是因为系统的性态随初值的敏感而呈现混乱,这仍然是混沌现象的决定性的表现

阿诺德说:“因此,近可积系统与可积系统的解相差不多,这时确定性与“随机性”共存。”

柯尔莫哥洛夫说:“当然,随着摄动的加大,上述条件受到破坏,我说的这个不再适用。分隔相邻“随机”层的环面将逐个破裂,“随机”层也相应变大,这时系统的所有可能解中大部分都是混沌解。”

阿诺德说:“轨道的不稳定性是力学系统运动中出现随机性、不可预言性和混沌的原因。”

Kolmogorov 在1954年世界数学家大会上指出:非退化的可积系统在保守的微小扰动后,虽然某些不变环面一般说来会被扰动破坏掉(称为共振环面),但仍会有相当多的环面被保存下来,也就是说整个相空间中仍然有许多的相流的运动是非常简单的(直观地,可以想象二维平面虽然没有被同心圆分层,但仍有许许多多的同心圆保存了下来,每个圆上的相流都共扼于一个旋转,只是相邻的两个同心圆之间相流的运动会比较复杂一些)。

阿诺德后来与德国数学家moser也开始通信讨论这个问题。

moser说:“不可积的哈密顿系统又是什么样子?”

阿诺德说:“直到现在也不完全清楚,也许永远也搞不清。但是由已知的东西出发探索未知的方法提醒我们应该先去了解充分接近可积的系统是什么样子。”

moser说:“我们现在准备试图证明这个定理。”

阿诺德说:“有什么好的办法码?”

moser说:“用牛顿迭代的办法了。就是找一系列的典则变换,不破坏哈密顿方程的式,一步步地变换近可积的系统使之越来越靠近一个可积系统,只要对参数的大部分点能做到就行。由于在迭代过程中会出现所谓的“小分母”,用通常的牛顿迭代法无法保证最终无穷多步变换的复合收敛,但利用改进的牛顿迭代方法克服了小分母带来的麻烦,从而完成了定理的证明。”

阿诺德说:“这个办法不错。”

moser说:“Sigel也对这个工作感兴趣,他在考虑圆周映射的线性化时,也曾提出过类似的证明思想,我在降低该理论对可微性的要求上又作出了一些重要的工作。”后来,John Nash 在他证明有关黎曼嵌入的论文中,也用到了类似的迭代方法(当然是独立完成,甚至可能早于moser),于是,后人又把他们的证明方法叫做 Nash-moser 迭代。

阿诺德说:“曾经的遍历性假设是猜测:通有的哈密顿系统,相流是遍历的。如果按照我的理论,遍历性假设不攻自破?由于可积系统不是通有的系统,一般的系统都是不可积的,因此由相流不遍历的可积系统并不能否定遍历性假设,但是我们知道近可积系统却是通有的。如果我们考虑 4 维的相空间,其等能面是三维的,如果该近可积的系统有不变二维环面存在,则此环面必将能量面的其余部分分割为不连通的两块,相流不可能从环面一边跑道另一边,所以也就不会有何遍历性可言。”

moser笑说:“不知道当年 Fermi 是怎么证明了遍历性假设的。不过据说他开密码锁也是一把好手。”Fermi当年的工作恰恰发现了不遍历性。说的是他搞了一批耦合谐振子,原来觉得能量可以自由的在自由度之间流动,最终达到玻尔兹曼分布。结果后来发现根据初始条件不同,能量卡在若干个自由度之间来回变,永远不会达到玻尔兹曼分布。验证了动力系统中,遍历性假设不是先天靠谱的。

阿诺德说:“我在想,共振环面破裂后到底会怎样?”

moser说:“这个问题仍没有完全解决。目前大家都比较清楚的是:一般会有较低维数的环面存在,分椭圆环面,双曲环面等,,也就是说仍然还有比较规则的相曲线;同时还会有一些很不规则的轨线,有人称之为 mather 集;甚至还有所谓的“马蹄”。”

KAm 理论,不仅是 Kolmogorov 定理本身,还包括为证明该定理所发展的一系列方法,该理论诞生至今虽已近半个世纪,但仍在不断的发展和完善中。它所应用的范围也不仅限于哈密顿系统,对于可逆系统,保体积映射,以及无穷维哈密顿系统(包括一些特殊的偏微分方程)都发展出了相应的 KAm 理论。甚至可以说,凡是有小分母出现的地方,就是 KAm 大显身手之处。

半壁书屋推荐阅读:异类玩家的自我修养如懿传卫嬿婉重生之浴血而归诡案奇闻给将军送粮后,竟成了我的小娇夫【综漫】我不是XXX镇魂:赤帝传说EXO之故事的恶女上门女婿的咸鱼生活假太监:永寿宫偷吃,撞破皇帝女儿身四合院:傻柱重生,收养破局红楼之林家有嫡子警校毕业后,火速进部当厅长开局就被赶出豪门白蔹宋泯三生三世梦彻骨四合院:刘家长子刘光齐还珠之情深似海我在全息武侠游戏里种田汉儿不为奴诡盗奇谈融入精灵世界法力无边高大仙进球吧!教练来自蓝星的乐子人删号回村后,我好像变坏了我们滔搏有救啦!足球:系统调试了两年半穿越进传奇,我的爆率百分之三百美女公寓月亮崇拜少司命英雄联盟之传奇归来我能看透卡牌的隐藏说明全能游戏设计师第二人格不对劲绝地求生之系统无敌禁区之狐胡莱网游之双星传说奥特:震惊!希卡利隐藏的阴谋梦与录神梦说,我有主角之资王者的脚下潜伏深渊在竞技场毁天灭地绝对搞错了什么穿成侯门主母,我成了京圈白月光白夜之神启重生:杀穿末日游戏洪荒:抱错大腿怎么办?欢迎来到诡梦世界求生游戏:种田是需要耐心的NBA:五双神迹谛造者补天记惹他?他隐藏职业,一人屠一城!
半壁书屋搜藏榜:网游:天赋太强,游戏开局就维护开局滋崩,我在派派疯狂猎杀!篮坛传奇富豪超能进化:我的兵种有点贵黑境时代西游之从加入诸天聊天群开始英雄联盟之传奇归来我真的不修仙从一级玩家,重新开始全境入侵又被电竞狙神带飞了末日降临之天赋异禀我在火影成立夸夸教玄门大佬混都市网游之我的世界什么叫开挂型射手啊我一个NPC能有什么坏心思穿越三代:开局我火你悔NBA:开局一张三分体验卡葬送的芙莉莲:永恒之旅超级打工仔趣谈百家姓原神:在提瓦特养老加入了聊天群万物品鉴系统氪金十亿,游戏开始修为反馈!腹黑王爷又吃醋了我能看透卡牌的隐藏说明掌上娇娇小说全文免费阅读世子妃你又被挖墙脚了云婷君远幽盖世小村医网游:我觉醒了两个隐藏职业足球生涯:从躺冠到成为传奇孤城重启全民游戏:我能召唤赤月恶魔从贞子开始制作怪谈游戏三无勇者搞事中我在异世无限氪金爽翻天!我靠美食成为全朝首富豪门婚色:总裁娇妻太迷人和平精英之逆风而起吐槽篮球仙帝的自我修养卓简傅衍夜你的情深我不配全文免费阅读大结局阮白慕少凌一胎双宝总裁大人夜夜欢免费阅读全文被龙之队开除,我成了禁区之王次元之王者降临变身萌主播:大神,站住!绝品保镖美总裁三国神话世界序列游戏,从抽取道具开始
半壁书屋最新小说:传颂之名海上冰路,我能召唤空投物资管够全职体校:国家队全是我的学生浣碧在钮祜禄氏做嫡女华夏神农虫族上将的雄主脾气不好科幻武侠之星际剑侠传穿越之盛世医妃林晚第五人格:各自安好超神之签到崛起入住黄金庭院后,爱莉拉我直播斩神:我的发小会甩锅眉庄:纯元不死你等不过尔尔星铁:开局骷髅,被银狼捡走我若为星君为月反派宝贝眼一红!各路大佬哄慌了直男超甜,男主疯狂献上女主剧本哪吒之魔童闹海:传奇重生边水猜叔,掌心的玫瑰区区如懿,打就打了带系统的糖糖全民游戏化,只有我唯一职业对强取豪夺者强取豪夺与donk的CS2之旅全息挑战:大学生无限求生游戏火影之宇智波多子多福风流短跑之神从梦幻西游开始的游戏人生原神:更新后手机连接了提瓦特云闪富的生命盲盒之旅星轨战纪:全能指挥官文案馆全剧终主人轻点罚,十七还不够听话吗地下城重生:冷言的逆袭联盟:重生韩国女主播,爆火全网HP:斯莱特林贫困生青春怎么选都有遗憾网游之刀问江湖逆天装备HP就你叫伏地魔?黑魔王?这也不够黑啊韩娱:南柯一梦独宠敌国质子,病弱太子颠覆朝堂新还珠格格之人儿归家星铁:小判官身边的傀儡师迷雾求生:从升华万物开始无敌塔防狂潮,我有无限装备栏!四合院:苟且愉生火影:变身宇智波怪力小萝莉时空中的深情沪圈霸总说他后悔了